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1 Background and Objectives

The Large Space Structure (LSS) research program was originally formulated in late 1982
in response to the increasing concern that performance robustness of Air Force LSS type
systems would be inadequate to meet mission objectives principally because of uncertainties
in both system dynamics and disturbance spectra. This lead to consideration of adaptive
control systems, where disturbances and/or plant models are identified prior to or during
control, thereby giving systems designers more options for minimizing the risk in achieving

performance objectives.

In the eurly ACOSS and VCOSS programs issues of performance sensitivity, robust-
ness, and achievement of very high performance in an LSS system were addressed. These
programs established the need to accurately identify modal frequencies and mode shapes
to acheive high-performance disturbance rejection for optical or RF systems, e.g. , [1].
For these cases, adaptive control mechanizations were shown to be needed to produce the
three-to-five orders-of-magnitude reductions in line-of-sight jitter required by the mission.

+The aim of adaptive control is to implement in real-time and on-line as many as pos-
sible of the design functions now performed off-line by the control engineer. Although it
is easy to configure an adaptive system by connecting an estimator and control design
rule, research is essential to identify the performance limitations of adaptive strategies for
LSS control. The long range goal of this research program is to establish guidelines for
selecting the appropriate strategy, to evaluate performance improvements over fixed-gain
mechanizations, and to examine the architecture necessary to produce a practical hard-
ware realization. The initial and continuing thrust, however, is to build a strong theoretical

foundation without losing sight of the practical implementation issues. (o
<k ) (—

2 Current Status

At the present time we stand at the beginning stages of the theoretical development in
adaptive control. A summary of earlier efforts is contained in the recently published tcxt-
book Stability of Adaptive Systems: Passivity and Averaging Analysis, MIT Press. 1986.
This publication is an outgrowth of research supported under this contract and ir vulved a
considerable amount of collaborative effort among several researchers in the field of adap-
tive control. The text discusses adaptive systems from the viewpoint of stability theory.
The emphasis is on methodology and basic concepts, rather than on details of adaptive
algorithm. The analysis reveals common properties including causes arnd mechanisms for
instability and the means to counteract them. Conditions for stability are presented under
slow adaptation, and the result is shown to be expressed as a frequency domain constraint
on a mix of frequency respones and signal spectrum. These are greatly influenced by user
choices regarding data filters and input spectrum. Some of the issues in the ideal case are
explored in [13], a reprint of which is included in the Appendix of this report.
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Under this contract we also explored the feasibility of applying the averaging analysis
to the adaptive control of a nonlinear flexible system. We chose a Duffing type oscillator
with a simple adaptive algorithm as a test case. The results were quite promising and have
been reported in [18], a reprint of which is included in the Appendix of this report.

Another approach to adaptive control is to design on-line robust controllers from esti-
mators which produce model sets, rather than a single model estimate usually produced by
the estimator. This estimation problem, referred to as set estimation is the main topic of
this report, and is also a topic of recent research activity.! Under AFOSR support, previ-
ous efforts along these lines have iuvolved linear set estimation, e.g. , [15,16,17,19]. In this
report we show how these mcthods can be extended to nonlinear flexible systems. Prelim-
inary results are presented for flexible systems with uncertain memoryless nonlinearities
at different locatious.

In this report we discuss the “separation principal” between model set estimation and
robust control design. This procedure allows for a more comprehensible approach to adap-
tive control design and differs from its predecessors in that model uncertainty is incorpo-
rated in the synthesis phase of the design rather than in the anlysis phase. By studying
some typical example systems, the set estimation methodology is extended to the nonlinear
case.

The results presented here for nonlinear systems, although of a preliminary and ex-
ploratory character, do indicate the feasibility of the basic approach as well as raising
many new questions which need to be considered in future work, e.g. , what is the appro-
priate robust controller parametrization; how does it relate to model parametrization; how
to iterate on the data if the estimate of model error is too large; what are the heuristics
for experiment design. It is clear that concurrent effort is needed for both nonlinear set
estimation and nonlinear robust control design - the former cannot be effective without
the latter.

'Invited sessions have been organized by Dr. Kosut at the last three American Control Conferences
(ACC) under the title, “System Identification for Control Design”. A fourth is scheduled for the upcoming
IEEE Conference on Decision and Control (CDC). In addition a mini-issue is being planned on this topic
for the IEEE Transactions on Automatic Control. Dr. Kosut is one of the Guest Editors.




3 Design of Adaptive Control Systems

There are many ways to design or configure an adaptive control system. Figure 1 depicts
the self-tuning-regulator (STR) configuration [3]. Two feedback processes make it adaptive,
namely: (i) a model parameter estimator, and (ii) a control design rule.

Model Parameters 6

: 1

Control Parameter
Design "|Estimator]
P
r—_t Control =+ Plant y
44

Figure 1: Self Tuning Regulator (STR).

The parameter estimator operates on the input-output data obtained from measurements
(y, u) of the plant system and produces a model parameter estimate § € IR?. The parameter
estimate is transformed by the control design rule into a controller parameter p € IR¢, which
is then used in a pre-determined parametric controller structure in feedback with the actual
system.

It is obviously very easy to construct an adaptive system: just connect a control design
rule and an estimator together. However, it is very difficult to insure that the resulting
adaptive system will provide acceptable performance. This has been the goal of research
in this area for over 30 years.

Roughly, if the true system is in the model set which underlies the parameter estimator,
then the adaptive system will asymptotically reduce the error signal for arbitrary bounded
exogenous inputs (r,d). Technically it is necessary that a a certain (closed-loop) transfer
function is strictly-poitive-real (SPR) [23,11,2}, e.g. , H(s) is SPR if it is stable and satisfies,

RelH(jw)] > 0,V (1)

The main difficulty, to put it simply, is that the true system is never in the model set -
there are always dynamical phenomena which remain unaccounted - and unfortunately,
the SPR condition fails to hold. Moreover, the theory based on this property is sufficient
and hence does not predict what will happen if the SPR condition is violated.

Under sufficiently slow adaptation the method of averaging can be applied to expose
a mechanism for stability and instability [2],{27],[3]. This theory replaces the above SPR
condition with a “signal dependent positivity condition” of the form,

R= / Re[H(jw))S(w)dw > 0 2)

3




where S(w) > 0 is a spectral density matrix associated with the exogenous inputs. This
condition is much less restrictive because even if H(jw) fails to satisfy the SPR condition
(1) at some frequencies, (2) can still hold provided the excitation is concentrated at those
frequencies where Re[H(jw)] > 0. Moreover, if any eigenvalue of R is negative then the
system is unstable. In using the theory for design, the user must select an appropriate
combination of data filtering and excitation spectrum. This task is similar to problems
encountered in system identification [22] except that here the system being identified is in
closed-loop, which vastly complicates the selction process.

To see this more clearly, consider the function I'(§) defined via Figure 2, 1.e. , for every
parameter choice 8 there is a resulting parameter estimate denoted by the function I'(6).

0 I'(6)
Control Parameter
Design "[Estimatod ™ |
P
r
Control m Plant (—Y¥
- +d

Figure 2: Illustration of the parameter map I.

It is shown in [24] that under slow adaptation, convergence points of the STR system in
Figure 1 are precisely the fixed-points of Moreover, the fixed-point is stable if (2) holds
and 1s unstable otherwise.

In summary, the averaging result shows that stability of the (nonlinear) adaptive system
can be deduced from a frequency domain condition (2) which mixes signals and systems.
However, there are some difficulties in utilizing the theory. In the first place, it is no
trivial task to determine the fixed point(s) of the map T, i.e. , those § € IRP satisfying
6 = T'(6). Secondly, both the transfer function H(s) and the spectrum S(w) depend in a
complicated manner on the fixed-point and it is unclear how to precisely manipulate data
filters and input spectrum to acheive either a satisfactory fixed-point and/or a satsfactory
transient response in the adaptive parameter trajectory. To put it bluntly, the theory fails
to produce a “user friendly” design method.

If we agree that the fundamantal difficulty in analyzing the adaptive system is the
ubiquitous model uncertainty, then one alternate approach is to configure an adaptive
control system which specifically accounts for the uncertainty. One such scheme, depicted
in Figure 3, replaces the parameter estimator in Figure 1 with an estimator that produces
a model set or set of uncertainty. This would avoid the major obstacle, namely, that the
true system is not in the model set used for identification. This type of estimator is referred
to as an uncertainty estimator or a set estimator. This differs from the estimator in the
usual adaptive schemes (¢f. Figure 1), where a single estimated model is produced, with

4




no information regarding its accuracy.

Model Set
Robust Set
Design Estimator] ]
Pl
r
Control a* Plant Y
- :

Figure 3: Adaptive control with uncertainty estimation.

The second change is to use a robust control design rule, i.e. , one that accepts a model set
in the form produced by the set estimator. Under these conditions, if the true system which
generated the measured data is contained in the estimated set, then the adaptive system
is not only stable, but acheives the maximum performance possible given the estimated
set of uncertainty.

Proceding in this way we have transformed the problem of adaptive control design from
analysis with trial-and-error into separate synthesis problems in set estimation and robust
control design. In effect this is a “separation principal” analogous to that in the LQG
design.

Set estimators should at least have the following features:

e Uncertain Parameters. A capability to account for that part of the system which is
known to be governed by physical laws or able to be described by known functions
dependent on certain constant parameters. The parameters may only be known to
lic within some range of variation.

e Uncertain Dynamaics. Able to account for uncertain dynamics for which a parametric
structure is not available or assumed, e.g. , neglected high frequency flexible modes,
uncertain memoryless nonlinearities, etc..

At present, methodologies for the design of set estimators are under development, e.g.
, 30], [15], [21], [17],[10),[19], [31). On the other hand, there is a reasonable maturity of
methodologies for robust control design, particularly for plants with uncertain nonpara-
metric linecar dynamics, e.g. , [25], [32], [6,7], [9], [29]. Robust control design of plants with
parametric uncertainty seems still underdeveloped despite some heroic efforts, e.g. , see
[4,5] and the references therein.

In the remainder of the paper we principally address set estimation for linear and
nonlinear systems. Section 2 provides a review of some recent results in linear set estimation
and some new results in nonlinear set estimation. Section 3 provides a brief section on linear
robust control of plants with both parametric and nonlinear uncertainty set descriptions.
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4 Linear Set Estimation

Consider the linear-time-invariant model set:
GO, W)= {Ge(1+AW):6€ 0, [|Allc <1} (3)

The set G(O, W) describes both parametric and nonparametric uncertainty. The para-
metric uncertainty is reflected in the set {Gg : § € ©} where Gy is a parametric transfer
function with uncertain parameters § € © C IRP. The mapping § — Gy is known but the
exact parameter values are known only to be in some set ©. The nonparametric uncer-
tainty is reflected in the set {A : ||[A]lc £ 1}. Thus A is an uncertain linear-time-invariant
system only known to be stable and unity bounded in the H-norm, which for continu-

ous time systems is defined as ||Allo = sup,eg JA(Jw)| and for discrete time systems as
NAllo = supp,j<q IA(e™)]. W is a stable transfer function which reflects the size of the

relative (or multiplicative) uncertainty, i.e. ,

18l = 12 e < 1

The above expression suggests interpreting the set G(O, W) as a set of transfer functions
“centered” at the parametric transfer function Gg with a “radius of uncertainty” of GyW.

It is usually possible in a modeling process to arrive at an initial parameter set ©y and
a weighting transfer function Wy. In the case when the prior set G(Qg, Ws) is too coarse
to lead to tolerable closed-loop performance levels, then a model set estimator is required
to refine the prior information by making use of measured data. Specifically, we extract

the following result from [19].

THEOREM

Suppose that the the measured data set
{yu:t=1,...,N}
13 obtained from the sampled-data system
y = Gu

where G has the discrete-time transfer function G(z). Furthermore, suppose
that from prior information

G e G(eo, Wo)
and the parametric transfer function in (3) has the structure:

Bo(z) bzl 4ot bpz™
Go(2) Ag(2) 14 az7' 4 4 apzm
67 = [@y---an by« by
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Under these conditions, if G 1is initially at rest, and is either stable or in a
stabilizing feedback, then:

G € G(©0,Wo) N G(On, Wo) (4)
where Oy 18 the parameter 22t estimate,
On = {6: || 4py — Boulln < [[BsWou| n} (5)

with the N-point signal norm ||z||% = N, ().

The above result implies that if the true parametric transfer function is Gy,,,., where
Biue € IR? 1s the true parameter value, then

etnxc € 60 N ON

A good data set would insure that the new set estimate 1s strictly inside the prior estimate,
that 1s

(")0 N @NC@O

Since both Ay and By are affine functions of 8, it can be shown [19] that Oy describes
cither an ellipsoid or an hyperboloid in IR?, depending on the data. Moreover, although
the set Op N Op is not an ellipsoid, nonetheless a bounding ellipsoid can be obtained.

A similar result is obtained in {31] for a co-prime factor nonparametric uncertainty
structure rather than the multiplicative one used here. More on bounding ellipsoids can
be found in [8] who considered the problem of parameter set estimation with bounded
noise and no unmodeled dynamics.




5 Nonlinear Set Estimation

The preceding principals of set estimation for lincar-time-invariant systems can be applied
to the set estimation of nonlinear systems. We will illustrate the problems using the
following three example systems: (i) an input nonlinearity, (ii) an output nonlinearity, and
(i11) a mechanical system with backlash.

5..1 Example 1: Input Nonlinearity

Consider the system shown in Figure 4 and described by:

y=Geu, u=f(u) (6)

— f() —= Go [—

Figure 4: Input nonlinearity.

Make the following assumptions:

1. The function f(-) is a memoryless time-invariant nonlinearity known to lie in the

scctor

|f(u) — ku| < éluf, Viu[<p (7)
where § < k and p > 0 are known constants.

2. Gp 1s a continuous-time linear-time-invariant system with stable transfer function
Ge(s) and where 8 € IR? are uncertain parameters.

3. The mecasured data set is

{y(t),u(t) : t=1,...,N}

where the time ¢ is normalized to the sampling interval.

The constants (k, 8, p) quantify the uncertainty in the nonlinear function f(-) in much the
same way that W bounds the uncertain linear-time-invariant nonparametric dynamics in
the previous section. A problem here, though, is that @, the input to the linear part of the
systen | is not a measured variable. Moreover, the nonlinear function precludes describing
any discrete-time transfer function from u into y. However, provided f(-) is sufficiently
smooth, for fast sampling we have the following sampled-data approximation

y=Gou, u=f(u) (8)



where now Gy(s) is approximated by the zero-order-hold z-transform
- 1
Go(2) = (1 = 27)Z{ZGo(s)}

This approximation is only valid at the sample times t € {1,..., N}. For example, if f(-)
is a polynomial or rational function, then there certainly exists a (not necessarily small)
region |u| < p such that (7) holds.

To illustrate the problems in obtaining a set estimator even for the approximate system
(8), suppose that (k, 6, p) are known, and we wish to estimate a parametric model for Gy(z).
For illustrative purposes, suppose that Gg(z) is in the two-parameter set:

Be(z) . bz~! ] a
G@(z) = Ag(z) - 1 +az"1’ 0= [ b } (9)

After some algebra one obtains the following equivalent input/output description of (8):
Agy — Byu = Bye (10)
where e(t) is an uncertain sequence satisfying
le(t)] < %Iu(tﬂ, Vti=1,...,N (11)
Since (k,é,p) arc known and u(t) is measured, the upper bound on the error sequence

is known at each time instant. Combining the above expressions with prior information
f € O, we obtain the parameter set estimate

Oo ﬂ @N
where Oy consist of those 8 satisfying,
)
[y(2) + ay(t ~ 1) bu(t — )] < Zlbu(t ~ 1), (12)

forallt=1,...,N.

5..2 Example 2: Output Nonlinearity

In the above example, the nonlinearity was on the input. Now consider the case where the
nonlinearity is on the output (see Figure 5) where

y=1(@), 7=GCou (13)
Proceding as before we now have,
Ayy - B()u == Aoc (14)

10
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Gy fO)F—

|

Figure 5: Input nonlinearity.
where now e(t) is an uncertain sequence satisfying
)
In this case the set estimate Ox consists of those 8 satisfying,

[0(8) + ay(t — 1) = but — V] < = ((0)] + lay(t — D)) (16)

forallt =1,...,N.

5..3 Example 3: Mechanical System

Consider the mechanical configuration depicted in Figure 6.

A '§ll‘l‘n\))g
{‘ sha f\ . vaoter
__c_‘ M OToT C X — - Yyear
" L PR N din _
Te‘( " § ’Q
FAE g ) H Lead ~__€-
\OQ& \\* N 33
Yrad .- load dsglaceng

( t“‘ (N*)

Figure 6: A flexible rotating system with backlash in the gear-train.

This system represents the case where tortional actuation is applied to a load through
a flexible gear-train. The gearing is shown to occur at the end of the flexible member,
although other combinations are certainly possible.

Neglecting any electronic dynamics, and assuming that the flexible rod is both uniform
and damped, the motion of the rigid body and first tortional “mode” for small angular

11




deflections can be approximated by the system of differential equations,

Iy = u+ D2 — 1) + K(y2 — 1)

Jej2 = —u—D(y2 — i) — K(y2 — 1)
Jrys = Nu

y = y2—Nys

u = f(y)

where u denotes the input applied torque, (y1,y2,ys) are angular deflections as indicated
in the figure, 7 is the relative gear angle, and f(-) is a memoryless nonlinearity arising
from backlash in the gear train. The constants are defined as follows: Jys, Jg, and J;, are
the motor, motor gear, and load inertias, respectively, N is the gear ratio which is greator
than one, and D, ' are the damping and stiffness, respectively, of the elastic rod. The
backlash nonlinearity f(-) has the typical shape as shown in Figure 7.

A

%) A

\

- |
_ ‘i\) N i Ty
6 =

[ L ¢

: 7 E\ &\&M%ié\% s
secNece )

Figure 7: A typical backlash function.

The break-point parameter y, relates to gear teeth spacing and the slopes in the two
regions relate to gear tecth shapes. Typically for |z| > y, the slope is very large whereas
for |z| < y, the slope is very small. It is clear that for some positive constants (k, §, p) that
f(-) satisfies the scctor condition (7).

To illustrate how to compute a set estimate for the parameters of the mechanical

system, suppose that the mecasured variables are
]
y =
[ Y3 ]

and that (I, D) are uncertain parameters, i.e. ,

-

K
g =
b D -
Observe that the input to the nonlinear function is
T
- Ny3
12
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One approach to describing a model set for this type of system is to approximate either
the input or output to the nonlinear function. This would be like the idcal situations in
the preceding two example systems. In this case, since y3 is available as a measurement,
the acceleration 73 can be approximated by high pass filtering the measured output y,.
For example, let

- S 2
o = Fya, Fs) = (sr + 1)

where 1/7 is sufficiently large so as to capture the dominant harmonics in the acceleration.
Then,

I
uR D= oY
With this approximation the situation is very similar to the example where the nonlinearity
is on thie output. However, there 1s one difference: here the input to the nonlinear function
also contains a term do to u, which can also be approximated by 4. Thus, the appropriate

model can be described by the feedback system shown in Figure 8.

z
" Y

|"Ge

Figure 8: Feedback nonlinearity.

[~y

fO b

The system is described by,

. . . z
R IH IR (1)
After some algebra, we obtain,

Imt + Jou

- N
A9 + n Y3

EEES

where

Ag(s) = ImJgs® + (Im + Jo)(Ds + K)

The procedure described in Example 1 can now be applied to obtain a set estimate which
will contain the true parameters. Of course the precise conditions under which the true
parameters are in the set estimate involve various approximations. In particular, due
consideration must be given to approximating @ by 4.

13




5.1 Standard Model Structure

Even though the three example systems are fairly general, it is also important to point
out that they do not exhaust all the myriad possibilities. A very general model format, or
template, is characterized in Figure 9.

fC)

Figure 9: Standard model
This model form is discussed in detail in [20]. Here we make the following assumptions:
1. P; is a transfer matrix which depends on a parameter § € IR? and which has the
y Py Py u
~ = _ 18
BRI e

2. f(-) is a scalar memoryless nonlinearity in the sector,

block structure:

az < f(z) < Bz, V|z[<p
where 0 < a < S.
3. The mecasured data set is

{y(t),u(t) : t=1,...,N}

The standard form allows for scalar memoryless sector bounded nonlinearties, but the
measured signals (y,u) can be vectors. Disturbances as well as nonparametric dynamic
uncertainties can also be included by replacing the “feedback” with a more complicated
system and by adding another input.

For the three example systems f is in the sector,
(k= 8)u < f(u) < (k+8)u, Viul<p
where § < k.

14
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For the system in Example 1 (8),

0 G
poz[loe]

For the system in Example 2 (10),
0 1
nel o]

And, for the system in Example 3 the transfer matrix P has the block structure (18)

with:
P Ds+ K
T S2[Iades? + (Im 4 Jg)(Ds + K))
]\T
Py o= 3 7
P = Ds 4+ K
T 2[Iymdes? + (Im 4 Jo)(Ds + K))
N? JMS2+DS+I\'
Py =

T s2dp s?[Imdes? 4 (Jar + Je)(Ds + K]

In Example 3 we used the feedback approximation (17) which yields

0 I
Fo = { Gan Go,'z]

where Gy in (17) has the block structure
Go = [Go1 Go,2)]

These examples demonstrate that a very large class of mechanical systems can be captured
by the standard form of Figure 9.

When Pj;! exists, the input and output to the nonlinear function is given by:

Jo = Pnu+ PnPh'(y— Puu) (19)
iy = Pp'(y—Puu) (20)

We have explicitly used the 8 subscript to indicate the parameter dependence. Thus, the
parameter set estimate follows directly from the sector condition as,

On = {0 : aig(t) < Golt) < Buslt), Vt=1,...,N} (21)

Observe also that in the case when (u,y) are vector signals, the above will still hold if P!
is replaced with the pseudo-inverse

Pltz = (P1T2P12)_1P1T2

15




The standard model structure (Figure 9) can also handle multiple sector nonlinearities
by replacing f(-) with a diagonal matrix nonlinearity

u = F(y) = diag[fi(y1) - - - fp(¥)]

where (2, y) are now vector quantities. The sector conditions can now apply to each of the
diagonal entries.

16




5.2 Disturbance Modeling

To make the model sets more realistic it is necessary to account for disturbances. For
example, consider (8) with an additional disturbance term d(t),

y=Geu+d, u= f(u)
With Gy = By/As we now obtain,
Agy — Bou = Bye + Apd (22)
where e(t) satsifies (11)
le(t)] <= %[u(t)], Vt=1,...,N
Suppose that d(t) is unknown but bounded by,
[dt)| < dm, Vt=1,...,N (23)

In effect both e(t) and d(t) have known bounds and by analogy with the preceding example
we can casily construct (in principal) the corresponding set estimates.

It is obvious though that there are many forms for how a disturbance can influence
a particular system. This leads to considering the standard model with an additional
disturbance input as shown in Figure 10.

d, ] — Y

Uu

<2

f()

Figure 10: Standard model with disturbance.
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5.3 Nonparametric Uncertainty

A more versatile model set would not only include disturbances and sector nonlinearities,
but also uncertain nonparametric linear-time-invariant dynamics. For example, consider
the system described by:

y=Go(1+AW)a+d, u= f(u) (24)
where f(-) is a sector nonlinearity, d(t) is a bounded disturbance, A is an uncertain transfer

function which satisfies ||Aflo, < 1, and W is a known stable transfer function.

Now, reconfigure the system into a “structured” standard form as in [7,26] shown below
in Figure 11.

d)u* —> y
P

C_ B B B I B N =

&
<y

Figure 11: Standard model with disturbance and uncertainty. m

Here the “feedback” matrix operator X’ contains all the model uncertainty,

X:[g(.) 0] l|

A

It is the diagonal structure of this matrix operator which causes difficulties in computing .k
an optimal model sct.

i
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6 Robust Control Design

6.1 Robust Nonlinear Control

There are some well developed approaches to nonlinear control design. For example, there
are the classical methods of gain scheduling, analysis via harmonic balancing (describing
function analysis), and the method of feedback linearization. This latter approach is ef-
fectively a generalized gain scheduling procedure. In fact it is a true synthesis method,
that is, a nonlinear control is directly designed from the nonlinear model [14]. The basic
idea is to apply a nonlinear feedback which brings the closed-loop system into a purely
linear form, which has obvious advantages for control design. A difficulty with the method
is that the linearizing feedback requires an exact knowledge of the type of system non-
linearities. Moreover, the control is typically much more complex than a gain schedule,
which bothers many design engineers. However, one can argue that feedback linearization
can give the designer a means to evaluate the limits of achievable performance from a
feedback system. Robustness of feedback linearization to model errors is an open area in
basic research. Some work on robustness to uncertian nonlinearities has been advanced in
the robotics area, where feedback linearization 1s there referred to as “computed torque”,
[28]. Developing robust nonlinear control is an area for some future work. To gain some
insight into the issues we consider next the case of robust linear control of an uncertain
nonlinear system.

6.2 Robust Linear Control of Nonlinear Model Sets

The premise is that the uncertainties are described via prior information on the nonlinear
sector and a set estimator which describes the range of uncertain parameters in the linear-
time-invariant part of the system.

As an illustrative example, consider the uncertain nonlinear plant with a linear feedback
control,

y=d+ f(g)a y= Gou, u= -Ky (25)

where Gy and K are linear-time-invariant systems, K is the linear feedback controller,
f(+) i1s a memoryless nonlinearity, y is the mecasured output to be controlled, and d is a
disturbance as seen at the output. The control objective is to attenuate the effect of the
disturbance at the output despite the uncertainties in the system model. Specifically, the
system uncertainties are as follows:

e the nonlinear function f(-) is in the sector,
(7)) —gl <élgl, VIgl<p
e the parameters in the linear-time-invariant system Gy are in the set o.
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Observe that these uncertainty sets can arise from a combination of set estimation and/or
prior information. From the control design viewpoint the source of the uncertainty is not
relavent.

To analyze this system we make the following convenient defintions:

Alg) = fly)—y
S = (1 + GoI\")_l
Ty = GeK(1+GeK)'=1-25

Obscrve that A(-) satisfies the sector condition
A < 8lgl, Vgl <ep

The transfer functions (S, Ts) are the closed-loop transfer functions from disturbance d
to output y and control u, respectively, if the nonlinear function f(-) is replaced by the
identity operator, which in this case is the “nominal” nonlinearity. The nonlinear feedback
system is then equivalently expressed as:

Sg(d + 6)
= A(Y)
= —Ty(d +¢)

&<

Now, let Ty(t) denote the impulse response of Ty(s), and suppose that there are constants
M >1, a>0,and r > 0, independent of 8, such that for all ¢t > 0,

ITg(t)I S Ale_at
(Ted)(®)| < =

Application of the Bellman inequality [12] yields:

ér
< -
le(®)] < 1-é6M/a

provided that

a
5<-M

r < (1-6M/a)p

The above inequalities bound &(t), which appears as an additional disturbance. Thus, the
ideal closed-loop transfer functions (Sy, Tp) must be shaped to make () small. In addition,

the linear controller K has other goals e.g. ,to robustly stabilize the linear-time-invariant
modcl set {Gy : 8 € ©}.
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Adaptive Control of a Nonlinear Osc*" »ting System

Robert L. Kosut®

Abstract A slowly adapting feedforward controller is
applied to a nonlinear (Duffing) oscillator. Simulation
results show that the adaptation continues relentlessly
to improve performance despite the complex system be-
havior, te. , the system state passes in and out of
both chaotic and multi-periodic attractors, finally settling
down to a “quiet” periodic orbit. An analysis is presented
based on the method of averaging. Under slow parameter
adjustment it is shown that the source of the complex be-
havior is the nonlineariy in the system being controlled,
not that introduced by the adaptation.

1 Introduction

Adaptive control systems can be generically represented!
by the set of coupled ordinary differential equations:

= = g(t,z,0) 1)
6 = ~f(t,z,0) (2)

In (1), z € IR" is referred to as the ”state” and con-
sists of dynamical states of the system being controlled,
controller states, and filter states in the parameter esti-
mator. The function ¢(t, z,0) is determined by the sys-
tem dynamics and the controller /estimator design. In (2),
6 € IR? is the adaptive parameter whose rate of adjust-
ment. is governed by a scalar constant 4 > 0, referred to as
the adaptation gain, and a function f(t, z,6) determined
by the designer. Observe that when the parameters are
held fixed, the system is governed by the nonlinear system
(1) for constant parameter 6.

In the case of an adaptive linear system, (1)-(2) reduce
to,

A(8)z + B(OYu(t) 3)
vf(t, z,0) (4)
where w(t) € R™ consists of all exogenous inputs such

as references and disturbances, and A(f) € R"*™ and
B(6) € IR™™™ are matrix functions of the parameter 6,

g

*Integrated Systems Inc., 2500 Mission College Blvd., Santa
Clara. CA 95054 and Information Systems Lab, Stanford University.
Research support from AFOSR Contract F49620-89-C-0043DEF
and NSF Grant F,CS-86-05646.

tnformation Systems Laboratory, Stanford University, Stan-
ford, CA 94305.

' Modnlo implementation via a digital computer.

Deirdre Meldrumt

Gene F. Franklin'

the specific { ons depending on the control design rule
- 1 the para—~ieter estimation model set. [In this case
w.on the p. -ameters are held fixed, the system is gov-
erned by the [ system (3) with 8 constant.

An adaptive control system, although a special type of
nonlinear system, is nonetheless a nonlinear system, and
as such one would expect to encounter limit cycles, bifur-
cations, and chaos. In the case of adaptive linear control
(3)-(4) , these latter phenomena are known to occur as
the adaptation speed is increased (large ), e.g. , [Mareels
and Bitmead(1986,1988)], [Salam and Bai(1988)], [Cyr et
al.(1983)], [Riedle and Kokotovic(1984)], and
[Ydstie(1986)]. Thus, rapid adaptation alone can induce
bifurcating and chaotic behavior.

In this paper we explore the case of adaptively con-
trolling a nonlinear system under slow adaptation (small
v). As we will see, chaotic phenomena will appear primar-
ily because of nonlinearity in the system being controlled,
and not because of adaptation. Specifically, we examine a
Duffing system under feedforward model reference adap-
tive control with slow adaptation. A simulation study
is performed along with an analysis using the method
of averaging, which has proven to be very successful for
slow adaptation of linear systems, e.g. , Anderson et
al.(1986), Sastry and Bodson(1988), Astrém and Witten-
mark(1989).

2 Adaptive Duffing System

The system to be controlled is the Duffing system:
i4+ki+zd=u (5)

where k£ > 0 is a small damping coefficient, z is a mea-
sured outprt, and u is the control input. Prior knowlege
of the damping and cubic nonlinearity is assumed unavail-
able, and hence, we implement the adaptive control:

Lz ©)
6 = 4r(r—-2z)

The adaptive parameter is 6, a feedforward control gain,
v > 0 is the adaptation gain, and r is a reference com-
mand which is to be followed by the output . This adap-
tation rule is an approximation of a so-called “gradient”
rule where the rate of adjustment is proportional to the




e G

negative gradient, with respect to the parameter 8, of an
instantaneous error function. In this case the exact gra-
dient rule is

G — oz = )~ Ul = 3)

where ¥ is the instantaneous gradient of z, that is, ¢ =
Oz /80. Thus, for constant 6, i satisfies the differential
equation )
dl+k¢+3rgw:r

Since ¥ depends on the unknown damping and cubic
nonlinearity in the system (5), the pure gradient rule
6 = vy¢(r — z) cannot be implemented. Using the {crude
but simple) approximation ¢ = r yields the algorithm of

(6).

Before studying the adaptive system (5)-(6) , recall
that the Duffing system (5) for constant 8 has been ex-
tensively examined. In particular, Ueda {Ueda(1980)]
made an exhaustive study with u = Bcost and tabu-
lated the resulting long-term behavior as a function of the
parameters (k, B). For example, with (k. B) = (.08,.2),
there are five coexisting periodic attractors, whereas for
(k.B) = (.05,7.5), (.25,8.5), or (.1,12)), the attractors
are all chaotic.?

As an example, for (k, B) = (.05,7.5), Figure 1(a) dis-
plays a plot of points of £(¢) vs. z(t) at 900 2#-periodic
strobe times, ie. , t € {27k : k = 1,...250(27)}. Such
a plot is referred to as a Poincare’ section. Figure 1(b)
shows a corresponding time history of z(t) vs. z(t) for 50
periods of the reference u = 7.5cost, i.e. , t € [0,50(27)].

Given the quite complex behavior of the system (5)
when 6 is constant and r is a sinusoidal reference, it is to
be expected that if 8 is slowly adapted, then the system
(5)-(6) will pass through regions which contain chaotic
and/or multi-periodic attractors.

3 Simulation Results

Simulations of (5)-(6) using MATRIXx software were per-
formed under the following conditions:

rejerence

r=Acost, A=0.1

damping

k= .05

adaptation gain

0 0<t< 250(27)
01 250(27) < ¢ < T50(27)
05 750(27) < t < 4250(27)

<2
H

?Simulations and reprints of some of the results in [Ueda. 1980]
can be found in many recent texts, e.g. , Thompson and Stew-
art(1986), Moon(1988).

mzitial condilions
0,z,1) =(75,0,0)

integration algorithm

4th-order Kutter-Merson integration algorithm
with a fixed step-size equal to 1/200th of the pe-
riod of the reference signal r, i.e.

T = 27 /200 (7)

To initialize the system there is no adaptation (v = 0)
for the first 250 periods. This is followed by 500 periods
of very slow adaptation (v = .01), and then the remain-
der of the time at relatively slow adaptation (y = .05).
The adaptive gain, ¥, was chosen to produce slow adapta-
tion to prevent any possible bifurcations and chaos soley
as a result of too rapid an adaptation, which, as previ-
ously mentioned, is known to occur in adaptive systems
even when the system being controlled is linear. Thus,
initially after the adaptation begins, r ~ 7.5cost. Re-
ferring to Figure 1, the initial response of (5)-(6) will
be chaotic. What we hope to see is that the adaptation
brings the system to a more quiescent condition, which
in fact is what occurs. Figures 2- 3 show the results of
the simulation over 4250 periods of the reference, i.e.
for 0 <t < 4250(2r).

L]

Figure 2(a) shows values of z and 6 at the l-period
strobe times t € {27k : k = 1,...,4250}. Figure 2(b)
shows the (z,8) Poincare’ section at these strobe times.
Note that time increases as 0 decreases in this figure. The
plots show that as 6 is adapted, the system passes in and
out of chaotic and periodic behavior. Specifically, reading
Figure 2(a) or (b) from left to right: (initiully) chaotic
— 3-periodic — chaotic — 2-periodic — 1-periodic —
chaotic — 3-periodic — (finally) 1-periodic. Despite this
complex behavior, the adaptation of 8 continues to im-
prove performance. In fact, as we shall shortly demon-
strate, the adaptive parameter asymptotically approaches
a small neighborhood of the constant value of ¢ which
minimizes the average of (z — r)2. This is precisely the
desired property of the so-called gradient algorithm (6).

Figures 3(a)-3(k) show samples of the system state
(6, z,z) from four perspectives:

(1)upper left: 5 periods of phase plaune (z, z).
(2)upper right: 5 periods of of (0, z, z) vs. t.

(3)lower right: A crude spectral decomposition of z(t)
over 5 periods using the discrete Fourier transform,

N-1
X(w) = % > z(kT)exp jwkT

k=0

with T = 27 /200 from (7), N = 5(27)/T+1 = 1001, and
we€ {.05k:k=0,1,...,100}.




(4)lower left: An (x,0)-Poincare’ section over 300 pe-
riods, the last 5 periods being those in the above plots.
Observe that time t flows in the direction that # deceases.

Comparison of the initial chaotic phase plot in Fig. 3(a)
with the final periodic phase plot in Fig. 3(k) shows a
significant improvement in performance as exhibited by
the spectral plots.

4 Averaging Analysis

In this section we provide an analysis of the simulation
results using the method oi averaging. Following the
approach described in Anderson et al.(1986), let z(t,6)
denote the frozen parameter state corresponding to the
adaptive nonlinear system (5)-(6) . That is, for constant
8, 2(t, 0) satisfies the forced Duffing system:

T4 k423 =0Acost (8)

Then, the “averaged parameter system” is defined as so-
lutions of the autonomous system

0= v fav(0) (9)

where for constant @,

fuu(6) = avg {r()lr() — 2, O)]} (10)
with avg {-} denoting the averaging operation
o
welz()) = Jim 7 [z (11)

The method of averaging tells us (roughly) that for all
small ¥ > 0, there exist solutions 0(t) of the adaptive
system (5)-(6) which are within order-v of equilibria of the
averaged system (9) and which inherit the same stability
type and approximately the same region of attraction.

To apply this to the simulation example recall that
r(t) = Acost with A = 0.1. Hence,

fav(0) = i3—[/1 — a(8)] (12)

where a(8) is defined for constant 6 by

a(8) = 2avg {z(-,6) cos(-)} (13)

Thus, a(8) is essentially a Fourier series coefficient corre-
sponding to the 1-periodic component of the frozen pa-
rameter solution £(t,8).

To determine a(8), consider the case where #(t,6) is
well approximated by the pure harmonic

(t.0) = a(f) cost + b(F)sin t

Substituting into (8), equating coeflicients of cos¢,sint,
and neglecting higher harmonics gives:

A = kb—-(1 - %cg)a
3,
0 = ka+(1- Zc‘)b
2 = a2+ b2

These formulae can be found in many texts, e.g. , [pg.
29, Hayashi(1964)]. A more useful form in our case is
to parametrize a,b,8 in terms of ¢, the magnitude of the
harmonic response. Thus,

a =
b = (14)
§ =
Substitution into (12) gives,
A ol — 22
(@) = 5 | A+ (1 4c) (15)

. 3.2y2
L2+(1~ZC)

Recall that the adaptive algorithm is designed to approx-
imately minimize

V(0) = avg {(r — £)?} (16)
Using (14), we also have
1), 2ca(l - 3¢7)
V(O) = = [a®+c S (17)

+ 3
\/k2+(1 — ";C",)2

Figure 4(a)-(b) shows plots of (vfav,8,V) vs. ¢ on dif-
ferent scales. The equilibrium of the averaged system, 6,
satisfies fay(6) = 0. The expanded scale in Figure 4(b) re-
veals that (6,¢) = (.5878,1.157). These predicted values
are in close agreement with the simulation results, 1.e. |
from Figure 3(k), (8, &)sim = (.577,1.25). Note that v fa,
is 1dentical to df/dt in the averaged system (9). Values
from the simulation are in general agreement with the
predicted values in Figure 4:

Ceim 2.30 1.76 1.45 | 1.18
§im || -.0032 | -.0036 | -.0031 | .0000
~fsv || -.0056 | -.0038 | -.0032 | .0000

Figure 4(c) reveals that the equilibrium of the averaged
systemn is stable because df,,/d6 is strictly negative (al-
though small) at the equilibrium. For comparison to the
optimum, Figure 4(d) shows a plot of V vs. §. Observe
that V(0) = .66 whereas the optimum, which occurs at
Oope = 1.9, gives V(0ope) = .62. Hence, the equilibrium
of the averaged system is close to the optimum, which
implies that the simple gradient adaptation rule is well
approximating the true gradient.




Figure 4 also reveals that the equilibrium has a large
remon of attraction, namely, for ¢ € [1.1,2.4] or equiva-
fenutly 0 € [.55.80]. One can not immediately conclude
that the adaptive system inherits this region of attrac-
tion because we have only examined the averaged sys-
tem corresponding to an almost pure harmonic solution
(14). Super- and sub-harmonic responses would in prin-
cipal have to also be evaluated, and such formulae ex-
ist. e.g. , [Hayashi(1964)]. However, the spectral plots
in Figures 3(a)-(k) show that in most instances the har-
mente response tends to dominate. This lends credence
to ue conjecture that the adaptive system has a region
of aitraction which is well approximated by the region of
attraction of the averaged system corresponding to the
hurmonic frozen parameter system solution (14). Again,
comparison of predicted values with the simulation data
points in Figure 4(a) tend to support this claim. The
spectral plots also show that the chaotic behavior can be
viewed 1o some extent as “noise” corrupting the harmonic

Ssrenal’

5 Concluding Remarks

The simulation results are encouraging and support the
use of a simply constructed adaptive control to minimize
the potentially deleterious effects of uncertain unmodeled
nonlinearities. The method of averaging is shown to pro-
vide a good qualitative prediction of the system behavior
despite the presence of chaotic and multi- periodic phe-
notnena.
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Closed-Loop Identification via the Fractional Representation:
Experiment Design

Fred Hansen®
Sandia National
Laboratories

Abstract

A important aspect of system identification is the
problem of experiment design. This paper uses a fractional
tepresentation approach to state and solve the closed-loop
experiment design problem in terms of variables which are
at the designer’s disposal: the closed-loop inputs and the
mitial controller. Results of cotnputer simulations are pre-
sented which compare optimal versus several non-optimal
wdentification experiments

Introduction

The problen of system identification is to estimate the unknown
paramecters of a dynamical system or plant from measurements of
systems input and output as shown in Figure la. In the figure, u
is the measurable system input, y is the measurable system out-
put and wis an unmeasurable system noise. Experiment design is
the problem of choosing the experimental conditions (e.g. input
signal u or sample time) to optimize the results of an identifica-
tion experiment. In the case of open-loop operation, this is a well
studied problem, sce {1, 2] and references therein. Unfortunately,
most actual identilication experiments are conducted while the
system is operating under closed-loop control (Figure 1b) and
directly applying existing open-loop results to the closed-loop
problem gencrally gives unsatisfactory results. Open-loop tech-
niques can take into account the loop induced u-w correlation
ouly at the expeuse of greatly increased complexity and gener-
ally yields a result in terins of the plant input u, a variable which
15 not at the desiguer’s disposal. In this paper, the fractional
representation [3, 4, 5] will be used to avoid the problem of the
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Figure 1: Block diagrans of open-loop and closed-loop system
identification problems.
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plant input and noise correlation and to obtain solutions directly
in terms of the loop inputs and the initial controller, variables
which are potentially at the designer’s disposal.

We assuine that during the identification experiment the plant
is in stable closed-loop control and that the initial stabilizing con-
troller (Cp in Figure 1b) is fixed and known. As an experiment
design objective we use that proposed in [6]. It assumes that the
estimated plant will be used to design a new controller and at-
tempts to minimize errors in the closed-loop dynamics due to the
new controller being designed for the estimated plant rather than
the true plant. We present the optimal closed-loop input spectra
which minimizes this objective subject to power constraints on
the loop inputs, the plant input and/or the plant output. To our
knowledge, this is the first time the closed-loop experiment de-
sign problem has been solved directly in terms of the loop inputs.
We also derive the optimal initial controller (for use during the
identification experiment) for the case of the a constraint on the
power in the plant input and output. This result is a generaliza-
tion of the results in [7}.

(R, S) Parameterization

The results presented in this paper are derived by means of the
fractional representation 3, 4, 5]. This theory represents both
the plant and compensator as the ratio of stable coprime factors
and has been used extensively in compensator design, for example
(5, 8).

Let £ be a noise free plant and Cg be any initial compensator
which stabilizes [y. Express Py as Ng/Dg where Ny and Dg
are stable and coprime (share no unstable zeros) and similarly
express Cy as the ratio of the stable coprime factors X/ Y. Then
all compensators which stabilize P can be shown (3, 4, 5] to be

of the form Xo+QDo 0
o -QNo '

where Q is stable. Converscly, Cg, for any stable @, will stabilize
P.

By duality, all noise free plants which are stabilized by a given
compceusator can be similarly parameterized in terms of a stable
parameter, say [, sce [9]. In {10, 11] it is further shown that the
noise dynamics of all plants stabilized by a given compensator can
also be parameterized, by a stable, stably invertible parameter,
S. These results are restated below.

The standard plant representation for identification is

P:y=Gu+ llw. 2)

Co =

where u, y and w are the plant input, output and noise respec-
tively. G and } are the plant input foutput and noise dynamics
respectively. Assuming that P is stabilizable, then, without loss
of gencrality, P can also be represented as

P:Dy=Nu+ Mw. 3)




where N/ D is a coprime factorization of G, and M is both stable
and stably invertible. Define the triplet (D, N, M) to be the
coprime factorization of the plant P. Then, it can be shown
[11] that a given plant P with coprime factorization (D, N, M)is
stabilized by the compensator Cq if and only if it can be expressed
as

Pisty=GCput Hipsuw, (4)
where
No + RYo N
¥ ——— T v 5
Gr Do RXe - D (5)
S5 M
= ———— = - 6
Hn g Do R¥Xe D' (6)

I is stable, S is stable and stably invertible, and Xo, Yo, Mo, and
Dy are as defined previously. The parameters /2 and § are easily
shown to be

DoN — NoD

R = ——0- 7
XoN + YoD (M)
oy ,

S = MM. (8)

NXoN + YoD

Figure 2 shows a block diagram representation of P(p 5.

Note that the parameters (R,S) form a subsystem within the
plant: 8 = Ra 4+ Sw. It is the properties of this (f2,5) sys-
tem which simplifies the closed-loop experiment design problem.
These properties include:

1. R and S are the only unknowns in the plant/loop. The
identification problem can be restated in terms of estimat-

ing (R, 5) rather than (G, I1).

2. The (R, S) system operates in open-loop. The gain from g
Lo « is necessarily zero.

3. The input of the (12, 8) system is a = Xory + Yorz ard
is thus dependent only on the closed-loop inputs and the
compensator. In particular, a is independent of both the
true p'ant and the plant noise.

7'1—,@——,4 Co

(R.S)
System

Figure 2: Closcd-loop block diagram showing the unknown plant
as a bridge centered on the (R,S) system.

These properties are easily verified using (4), (5), (6). Taken
together, these properties allow the identification problem to be
restated as one of estimating (R, S) from a and § rather than
estimating (G, H) from u and y, thus transforming the closed-
loop problem in an open-loop problem. In addition, property 3
indicates that a is dependent only on the closed-loop inputs and
the initial compensator, quantities which arc at the experiment
designer’s disposal. Therefore, any experiment design results for
the (R, S) system which gives specifications on a will also solve
the closed-loop experiment design problem.

Experiment Design Problem

As an experiment design objective, we use one suggested in (6]
which is oriented specifically toward identification for the pur-
poses of controlicr design. Assuming the estimated plant is used
to design a new controller, this objective secks to minimize errors
in the closed-loop dynamics due to the fact that the controller
was designed for the estimated plant rather than the true plant.

We make the following assumptions concerning the plant iden-
tification experiment.

1. The true plant, Py, is known to be a member of some known
set TI. This set is such that there exists a robust controller
which stabilizes all plants in II.

2. During the identification experiment, the plant is controlled
by a fixed initial stabilizing controller, Co, which stabilizes
all plants in 1. Cp is assumed known.

3. After the identification experiment, the estimated plant,
P, is used to design a new controller by some pre-defined
design rule C = D(P).

The objective to be minimized is defined as
Ji=Eu | 18Ty, *Wrdw (9)

where £, is the expectation operator with respect to the plant
noise, Wr is a frequency-dependent weighting function, and AT,
is the error in the closed-loop transfer function from ry to y (sce
Figure 2) as a result of € being designed for P rather than P,.
Thus ) o
__G¢C aC

14GC 1+GC’
where G, and G are the 1O dynamics of the true and estimated
plants respectively and

We usc a general power constraint on the signal a:

AT, (10)

d Wodw < K
-
where &, is the power spectral density of a and W, is a frequency-
dependent weighting function.

Unfortunately, this objective-constraint pair cannot be solved
directly. We therefore approximate the objective following the
procedure described by Ljung in [2, 12]. First let C; = D(P,) be
the controller designed for the true plant. Let X, /Y;, (D, Ny, M,)
and (D, N, M) be coprime factorizations of Cy, P, and P respec-
tively. Finally, let (R, 5¢) and (&, §) be the (R, S) parameteriza-
tions of P, and P. Assuming that the plant estimate P is “closc™
to the true plant P, (in the sense that AR = R, — R is small)
and the design rule D is continuous, then it is shown in {11] that
ATy, |? can be approximated to first order in |AR| by

AT, |* = WalARP (11)

where
XY XN+ Yth)2
(XN + YD)} (XoNo + Yo Do)

Thus, the J; is approximately

Wy = . (12)

I / E{|ORP)WaWrdo.

Ljung shows in [2] that £,]AR}? can be approximated asymptot.
ically for large n, large N and small n/N by

AR
EL AR %I‘“‘;T_ (13)

o




where n is the order of the plant model in the identification algo-
tithm, N is the number of data points used in the identification
and ¢, and &, are power spectral densities of w and a {12}. This
approximation assumes that identification algorithm is a PEM
(Prediction Error Method) type, that the (R, S;) system is in
open-loop and that the true model is in the model set (i.e. no
unmodeled dynamics).

Collecting everything except ¢, into a single objective weight-
ing function, Wy, the final design problem becomes:

Minimize: J; = / %du (14)
with respect to @, and possibly C'O—subjecl to the constraint
/' G Wolw)dw < K (15)
where - n
Wiy = N[S‘F(DWW,IWT. (16)

Solutions to this design problem are discussed in the following
section.

Optimal Designs

We consider two different design problems. In one, the initial con-
troller is assumed fixed and we obtain the sct of optimal closed-
loop input signals. In the other, we find both the optimal initial
controller and the closed-loop input signals. We first consider the
constraint in more detail.

The C unstraint

Often the loop inputs represent physical quantities which need to
be constrained during the identification experiment. A constraint
or a does not directly yield a constraint on r; and r, since the
inverse map from o to ry and ry is not unique. However, if the
power apportionment between r; and r; is determined a priort
then (15) immediately becomes a constraint on the loop inputs.
For example, supposc that the loop is to be driven from r,
only. Then, a = Xory (with r; = 0), and a gencral power con-
straint on ry of the form
q)fx ‘V"l (“‘))d“" <K
-
is accomplished via (15) by using the weighting function
,._lr w
X5 -

W, =

(17)

Likewise, if only r3 is to be used to drive the loop, the appropriate
choice of W, in (15} is

A (18)

Also, a constraint on the total power in the loop inputs is accom-
plished by setting

W, = l(max{Xo(u),Yo(u)})"'r . (19)

where it has been assumed that cach input (ry or r5) will be used
only at those frequencies where it has the highest gain to the
internal signal a. These weighting functions is listed in Table 1.

It is also common for the loop inputs to be non-physical num-
bers somewhere inside a feedback control program. In this case
constraining the loop inputs has little meaning and it makes more
sense to constrain the input and output of the plant itself. De-
note that portion of u and y which is due only to the loop inputs
as u, and y,, Then, by the proper choice of W,, (15) can also
be used to constrain the power in u, and y,. See [11] for details.
These weighting function are also listed in Table 1.

Constraint

[

&, W, dw < K

-r

X5 1*Ws,

¢ Wydw < K

-x

Yo' Wi,

Total input power

|(max{xo,Yo))![

x N, 2
W do<K||—"t T w
B do s K 'N,x0 F DY, ¥
. . D, ?
o < — 7t | w
 Su W do< R 'N,Xo +DYol ¥

Table 1: Scveral possible constraints which can be put in the
form (15) and the corresponding W,

Loop Input Design

The problem of minimizing (14) with respect to ¢, subject to
(15) is a standard minimization problem which admits a closed
form solution {2]. The solution is

[ Woi;
(po,opl =7 '#‘ .
o

where 7 is a scaling constant chosen so that equality is obtained
in the constraint. The optimal spectra for the closed-loop inputs
ry and r7 must therefore be such that

(20)

q)a.op( = |/\’Olz¢n,opl + IY()lzd"rz,opt - (Ql)

Thus, the optimal closed-loop inputs are characterized not by
a single pair of spectra for ry and rq, but rather by the set of
non-negative definite solutions to (21). This solution set can
be shown [11] to be independent of the particular choice of the
nominal plant Py, and coprime factorizations for Py { No/ Do), for
Py (Dy, Niy My), for C¢ (Xo/Ye) and for Cg (Xo/ Yo).

The solution given by (20) and (21) has the disadvantage that
it depends on the true plant through W,,; and, in some cascs,
We. Though this problem is shared by most other experiment
design solutions in the literature, it severely limits the solution's
practical utility. To address this, we propose to restate the origi-
nal design problem in terms of an average over all possible plants.
The plant has been assumed a member of a known sct I1. We
further assume that the true plant is a random variable with a
known distribution within that set. The averaged design problem
can then be stated as:

.. x ”,ob'
Minimize Jyawe = Ep, —duy (22)
- O,
subject to the average constraint
Ep, d,Wodw < I, (23)

where Ep, is the expectation operator over all possible true plants.
Both expectations are assumed finite. Therelore the expectation
and integration operator can be exchanged and the solution is
casily shown Lo be

Ep W;

W, (24)

¢o,opl—nc =7
In the rest of the paper, this spectrum will be referred to as the
“optimal averaged spectrum”. Note that this is not simply the
result of averaging the optimal spectrum over 11.




Controller Design

The previous section considered the problem of finding the opti-
mal closed-loop input signals given a fixed initial controller. In
this section we will consider the problem of finding both the op-
timal closed input signal and the optimal initial controller. The
special case considered is that of the design constraint being of
“LQG-type” on the power of the plant input and output. In
particular we will
® ”’obj

Minimize J; = Tdu (25)

with respect to both Co and $,, subject to the constraint
/ (a0, + 620, )dw < K . (26)

First note that since the loop is linear, the constraint can be
restated as

*

/ (P, +620,, )do < 1\'—/ (P, +070, )dw = I, . (27)

x —-n

where I, is defined as shown. As in before. u, is tlat compo-
neut of u due entircly to the closed loop inputs and u,, is that
component of u due to the plant noise w, likewise with y, and
Yo From Table 1, this can be expresaed in the form of (15) with

_ 1 D7 + 0N ?

W, = =\ . 28
XoNi + Yo DyJ? (28)
From the previous section, the optimal $, for a given Co is
Wou;
4>o,op(]Co =7 Woal (29)

where v is chosen such that the equality is achieved in the con-
straint. Thus v is

K,
= 0
7 2 Wor; Wodw (30)
which implies that the minimum J; for any given Co is
i 2
(f_, ‘/WobjWodu)
Jl.min‘Cn = K . (3‘)

Minimizing this with respect to Cg will yield the optimal initial
compensator for the identification experiment. Using (16), (12)
and (28), Wop; W, becomes

M XY,

n
WopiWo = —0 Wr(a®|D? + BINSP) |sorm—me—
b N (0’| De|* + b*|Ne[*) (XN, + .D.)?

The importaut point is that this product is independent of the
initial compensator Co. Thus, the only term in the cost J; ninic,
which is a function of Co is K; and Jj nynic, will achicve a min-
imum when K, achieves its maximum. K, is maximized when

Jiao = [ (a0, +570,,)du (32)

is minimized (sce (27)) which is the precisely the LQG prob-
lem. Thercfore, the optimal controller to use during the during
the identification experiment when the design constraint is of
“LQG-type” is the associated LQG controller. The optimal loop
input spectrum is given by (29). Note that this result is inde-
pendent of the weighting function in the objective, Wz, or the
new-compensator design rule D.

This result contains, as special cases, two previously pub-
lished results by Ljung and others (2, 6, 7] on optimal controllers
for closed-loop identification and shows them to be the extremes
in a continuum of such design problems. In (2, 6] the authors
show that if the constraint is placed on v alone theu open-loop
operation is optimal for plant identification, assuming that the
plant is stable. By a similar analysis it is showa in {7} that
plant output constraint implies a minimum variance controller
is optimal, assuming that the plant is minimum phase. Both of
these results are special cases of the solution presented here. If
a = 1 and b = 0, the constraint is on u and minimizing Jygn
yields the “high cost of control” solution (open-loop operation
when P is stable). If @ = 0 and & = 1,the constraint is on y
and the optimal Cp is the “clieap control” solution, (the mini-
mum variance controller when P is minimum phase). However,
the solution presented here is valid if the plant is unstable or
non-minimum phase and for the continuum of values of a and &
between these two extremes.

The original constraint {26) specifies a maximum on the total
power of u and y. The LQG controller, merely sceks to minimize
thie noise contribution toward this maximum leaving as much
power as possible for the “signal” contribution of . Thus this
solution can be interpreted as using that Co which maximizes
the signal-to-noisc ratio in the signals u and y. This solution
also has the implication that the initial controller is imnportant
only in the case wlere the constraint is small enough that the
plant noise makes a significant contribution to A",

Simulations

To illustrate this experiment design technique we offer the fol-
lowing simulation examples. In these simulations, the plant is
stabilized by an ini*ial fixed controller and is identified from 500
input-output data samples. The final estimated plant is used to
design a new compensator. The resulting closed-loop transfer
functions are caiculated for the loops containing the new com-
pensator and the true plant Tp,, and the new compensator and
the estimated plant, Ts. Finally, the simulated experimental ob-
jective is obtained by averaging the integral squared difference
betveen Tp, and T; over 100 independent simulations. Note
that this is the original objective (9), not the approximation.

The set of plants we consider was first suggested in {13] as
a benchmark problem for system identification, adaptive control
and robust control. The continuous time model is

_g(i __1_) 33
y=- s 242w, Es + w? u (33)

The unknown parameters in the system are w,, the natu.al fre-
quency, and £, the damping ratio, and arc assumed to be in the
intervals,
1Hz € w,f2x <212
02< € <.

(34)

These uncertainties comprise the set TI. When nccessary we as-
sume w, and § arc uniformly distributed. We simulated two
particular plants in this set; P, with (w,,€) = (11z,0.1) and
Pywith (wy,£) = (2Hz,0.02).

This plant was transformed into a discrete plant assuming a
zero-order-hold and a sampling rate of 20 I{z. No noise model was
included (13]. We assume the full plant dynamics (inputfoutput
and noisc) are of the form:

P o (1+ a1z7 +azz a3z ¢ au“)y =
(27" b2 4 b3z + bz Yu + w  (39)




.

where w is white Gaussian noise. All eight coeflicients are esti-
mated. The initial controller is

_1-269:7' $253:7% - 841270
T 1725271~ 175272 — 00925273

Co (30)
which stabilizes all plants within the uncertal 'y (34). With this
controller the closed-loop has essentially the same resonance as
the plant, This resonance will have a noticeable impact on the

final experiment designs.

lw

i - y
T P
Figure 3: Final contol system in STR configuration

The estimated plant is used to design a new controller in the
configuration shown in Figure 3. Letting &, be the estimated
plant's natu i frequency, A and /} are chosen so that:

a) the resonant poles are radially projected inwards by a factor
of .95 (the “control™ poles) and .85 (the “estimator” poles),
and

(=g
~—

the double integrator poles are moved to a natural fre-
quency of (.3+.3w,) with a damping ratio of .85 (“control”
poles) and a natural frequency of (1 + w,) with a damping
ratio of .9 (“estimator™ poles).

E is then selected so that the four selectable closed-loop ze-

ros coincide with the “estimator” poles specified above. This

choice make the overall control design equivalent to a state-

estimator/state-variable-feedback controller. This particular de-

pendence on @, was chosen to obtain a faster closed-loop with

the faster plants (those with higher resonant frequencies).
Experiments are designed to minimize

J = / (AT, [dw.

"

This new controller is slightly more general than that considered
carlier due to the presence of the pre-compensator. By similar
arguments this objective can be approximated by

x Wb'
L= —dw,
! / ®,
where Wey,; is
2 -[_—:‘.2
B,

BA(NoN + YoD,)?
(BN + A D) XoNo + Yo Do)

I
Wary = AIS" (1)

and A, B, and E; comprise the ncw compensator designed for
the true plant. All other notation is consistent with that used in
Section 2 with [ and A, corresponding to X and Y; respectively.

The first set of results we present are for the case where a
power constraint is placed on the loop input r;. Note that this
constraint is one which can not be addressed by previously pub-
lished experiment design techniques. Figure 4 shows the four
input spectra uced in the simulations. It includes the optimal
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Figure 4: Optimal r; spectra assuming the true plant to be P;
and Py, the averaged optimal spectrum and a white spectrum.
Optimal spectra calculated for a power constraint on ry.

spectra assuming the true plant to be Py and Py, the optimal av-
craged spectrum and a white spectruimn, all of unity power. Note
how the optimal spectrum for P; notches out the plant’s reso-
nant frequency. Recall that when Cq is used, the plant and loop
have the same resonance. Thercfore, if Py is the true plant, the
gaiu from ry to both u and y will be large at 2 He; little power
is required at that frequency to excite the plant, thus the notch.
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Figure 5: Simulation results obtained when true plant is Py and
loop is driven by spectra shown in Figure 4.
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Figure 6: Simulation results obtained when true plant is P; and
loop is driven by spectra shown in Figure 4.

Two parallel sets of simulators were run, one with the true
plant being P; and the other with P;. Figures 5 and 6 show the
average experimental objective versus input power at r; for each
of the four spectra in Figure 4. In each simulation the plant was
also driven by a white noisc at w of power A = 107*.

In both scts of simulations, the optimal spectra for the true
plant provides the best plant identification, a factor of 3 better
than a white input is P is the true plant and a factor 2 better if
P is the true plant. Note also that if P; is the true plant, using a




spectrum designed to Py s worse than simply a white loop input,
However, the optimal averaged input provides a superior plant
whentiication than cither a white input or an input designed for
the “wrong™ plant and nearly as good an identification as the
optimal input spectrum.

In a final set of simulations we tested the optimal initial con-
troller result presented earlier. In this example we choose the
constraint to be

x
/ (5y + 54, )dw < I
-

for some Ko The optimal initial controller is the LQG controller
desipned to minimize the control cost

/ (5do, + 5P, )

where u, and g, are those portions of u and y, respectively, due
to the plant noise alone. To test this result, we performed sim-
ulated identification experiments using five different LQG con-

trollers designed to minimize the control cost

/ (phog + {1 —p)dy )do

for p - 0.99,0.9,6.5,0.1 and 0.01, each assuming the Py was the
true plant. As a sixth alternative, experiments were also s'mu-
lated using the initial robust controller preseated earlier in this
section. For the purposes of this example the LQG controllers
will be referred to as (o, and the robust controller will be de-
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Figure 7: Simulation for the initial controllers Co g9 through
Co. 01 and Co 1. In all simulations the true plant is P;.

Figure 7 shows the results of simulations using each of these
six initial controllers. In all cases, P, was the true plant. As
before, each data point is the average of 100 indepcndent simu-
lations. These simulations confirm that Cg s is the best initial
controller, providing the lowest average objective over 4 orders
of magnitude in both the constraint and the objective. Just as
importantly, these results confirm that the initial controller is im-
portant only if the constraint is sufficiently small that the plant
noise is a significant component of the plant input and output.

Conclusion

The problem of system identification experiment design in which
tie system to b W70 D operating in a siable dused Yhop has
been addressed. We have shown how to minimize the objective

proposed by Yuan and Ljung [6] subject to power constraints on
the closed-loop inputs, the plant input and/for the plant output.
In addition to being more general than other solutions, our solu-
tion has the unique feature that it yields specifications on vari-
ables which are at the designer’s disposal, i.e. the closed-loop
inputs and the initial compensator used during the experiment.
Previous solutions yield specifications on the plant input, a vari-
able which not at the designer’s disposal. The solution for the
optimal initial compensator contains two previously published
results as special cases and shows them to be the extremes of a
continuum of such solutions. We also presented simulation re-
sults which demonstrate the use of our method.

In this paper, we have not addressed the important problem of
unmodeled dynamics. However, we believe that this method of-
fers advantages here as well. For example, the weighting function
Wy can be sclected to de-emphasize those frequencies were the
unmodeled dynamics are dominate. Furthermore, the fact that
the (R, S) system is necessarily stable simplifies the techniques
for on-line uncertainty estimation in {14] and broadens the tech-
niques in {15, 16] to be applicable to any system operating in a
stable closed-loop.
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